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Definitions: Quantum Advantages (QA)

e Quantum refers to the principles of quantum mechanics, the physics governing
subatomic particles like electrons and photons.

e Many physicists and computer scientists describe quantum mechanics as a
generalization of classical probability theory.

* Quantum mechanics deals with two fundamental properties of subatomic particles.
* Superposition
* Entanglement

* Quantum computing is a type of computation that uses the principles of quantum
mechanics to process information in ways that classical computers cannot.

* In gquantum computing, quantum advantage is the goal of demonstrating that a
programmable quantum computer can solve a problem that no classical computer can

solve in any feasible amount of time, irrespective of the usefulness of the problem.

e The term was coined by John Preskill in 2011, but the concept dates to Yuri Manin's
1980 and Richard Feynman's 1981 proposals of guantum computing.
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Definitions: Quantum Advantages (QA)

Example

Problem Type

Advantage Over
Classical

Current Status

Random Circuit Sampling
(Google Sycamore, 2019)

Searching an unsorted
database for a specific entry
(Grover’s Algorithm, 1996)

Sampling from random
guantum circuits (benchmark
task)

Unstructured search /
optimization

Performed in 200 seconds,
estimated 10,000 years on a
classical supercomputer

Quadratic speedup: classical
search requires O(N) queries;
Grover’s requires only 0(\/N)

Achieved — Demonstration of
guantum supremacy

Demonstrated on small-scale
NISQ devices (up to a few
qubits).

Integer Factorization (Shor’s
Algorithm, 1994)

Factoring large integers (used
in encryption)

Exponential speedup over best-

known classical methods

Theoretical — Not yet realized
at scale

O(N®)

O(N®)
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Definitions: Quantum Correlations (QCorr)

* Classical correlation is a statistical measure that describes the extent to which two or
more random variables are linearly related—meaning they tend to change together.
* this statistical measure obeys classical probability theory and local-realism theory*,
* it describes joint statistics of separate entities.
e e.g., coin toss results that depend on each other

* Quantum correlation is a general term in quantum mechanics that refers to non-classical
statistical relationships between two or more quantum particles.
e can violate local-realism theory, demonstrating nonlocality,
» correlations physically entangle subsystems so that their total information exists
only in the global state — not in any part alone.
* e.g., two quantum dice always rolling the same number no matter how far apart
they are

* The strongest form of quantum correlation is quantum entanglement.

* A more general type of quantum correlation that can exist even in separable (non-
entangled) states is quantum discord.

* Things have definite properties (realism), and those properties can only be influenced by nearby events (locality).
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Motivations

* The goal of ML task is to model the distribution p(y|x) using a parameterized
classical model pg(y|x) based on a set of training data {x(i),y(i)}livzl,x ~p(x),y
~p(ylx).

e This is achieved by tuning the parameter 8 to minimize certain loss function that
represents how far pg is from p.

* Classical models rely on joint and conditional probabilities
e capture only statistical dependence, not intrinsic physical relationships
e correlations are local— information is shared only through explicit data
features or parameters
e constrained by the curse of dimensionality — scaling poorly with data size
and complexity

for machine learning tasks?

OL)" S. Purba: Quantum Correlations Enabling Quantum Advantage in Machine Learning October 24, 2025 5



Motivations

* In gquantum ML (QML), quantum advantage is the ability of quantum systems to
perform learning tasks faster, with fewer resources, or greater accuracy.

 Quantum correlations (entanglement, discord) allow nonlocal dependencies —
relationships that can’t be described by classical probability distributions.
e can learn information beyond the training distribution,
* store and process information globally across subsystems, rather than locally per
variable, enhancing model expressivity

* Phase correlations allow constructive/destructive interference
* boosting learning efficiency and speedup

* Entanglement-based correlations provide

* coherent information transfer,
* reducing energy and communication costs compared to classical models
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Motivations

* Entanglement-based Advantage: H. Zhao and D.-L. Deng, “Entanglement-induced
provable and robust quantum learning advantages,” npj Quantum Inf, vol. 11, no. 1,
p. 127, Jul. 2025, doi: 10.1038/s41534-025-01078-x.

* Quantum No-free-lunch (NFL): K. Sharma, M. Cerezo, Z. Holmes, L. Cincio, A.
Sornborger, and P. J. Coles, “Reformulation of the No-Free-Lunch Theorem for
Entangled Datasets,” Phys. Rev. Lett., vol. 128, no. 7, p. 070501, Feb. 2022, doi:
10.1103/PhysRevlLett.128.070501.

* Discord-based Advantage: M. Karimi, A. Javadi-Abhari, C. Simon, and R. Ghobad,i,

“The power of one clean qubit in supervised machine learning,” Sci Rep, vol. 13, no.
1, p. 19975, Nov. 2023, doi: 10.1038/s41598-023-46497-y.
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Fundamentals: Quantum Computing

QC Timeline: Noisy Intermediate-Scale Quantum (NISQ) — Fault Tolerance (projection)

We are here
NISQ era
1935 — Schrodinger 1964 — Bell's theorem  1981-82 — Feynman: 2009 — HHL quantum
‘cat' & entanglement l simulating physics = QC linear-systems solver
1935 — EPR T T 2035 — Projected
; : 1972 — Proof of entanglement 1991 — Ekert E91:
Einstein-Podolsky-Rosen fault-tolerant QC
( ¥ ) Entanglement-based QKD Q
T T T T T T
1940 1960 1980 2000 2020 2040

Year
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Fundamentals: Quantum Computing
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Fundamentals: Quantum Computing

Classical bit

0
O

or

Quantum bit (Qubit)

0)

Superposition

|0) with probablity ||’

L i By )=a|0)+p|1)—

(A

M

_{

1)

classical bit vs qubit [1]

In the computational basis,

o= [3.10=[

Measure  |1) with |Jrrut:|l:mlzulit3;f|)!‘3|2

|0): The probability of finding the qubit in ground state or up-spin is 100%.
|1): The probability of finding the qubit in excited state or down-spin is 100%.

More generally, a qubit [Y) = a|0) + B|1) is

) =[],

where probabilty,

Quantum state is represented as |.) dirac notation.
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Fundamentals: Quantum Computing

The Bloch sphere gives a way of describing a single-qubit quantum state (which is a two-dimensional
complex vector) as a three-dimensional real-valued vector.
Quantum circuit/model is a sequence of linear transformations using quantum gates on the qubits,
followed by measurements to extract a classical outcome.
Common quantum gates (MUST be unitary):
* Hadamard (H): create superposition (e.g., [0) = (]0) + |1))/V2).
* Pauli X, Y, Z: single-qubit rotations around x, y, z axes.
 CNOT (Controlled-Not), CZ: two-qubit gate; flip the target if the control qubit is |1); creates
entanglement.
Why must quantum gates be unitary?
* Reversibility: Quantum evolution is information-preserving; unitary U ensures a unique inverse UT.
*  Probability conservation: Unitarity enforces UTU = I, keeping total probability = 1.
How is measurement performed (computational basis):
* Measure each qubit in the Z basis {|0), |1)}.
* The state collapses to |0) or |1) with probabilities given by the squared amplitudes.
* Repeated shots (many runs) build histograms to estimate outcome probabilities.

)

B % H ; 2]
- H 2] H > [
Saknhi e N T 4 ﬂ

C = 0

A quantum circuit A Bloch sphere i

o — H

qd1— H
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Fundamentals: Quantum Computing
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Fundamentals: Quantum Computing
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Fundamentals: Quantum Computing
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A qubit can be in a state of both 0 and 1 at the same time, a phenomenon called

superposition.

Post-measurement distribution (collapsed to |10))
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Fundamentals: Quantum Computing

L
O‘: S5

* An n-qubit register has 2™ computational-basis states {|x): x € {0,1}"*}.
* Applying H to each qubit (H®") yields a uniform superposition with equal outcome

probability 1/2™ when measured in the computational basis.
* Uniform superposition is cool, but not a speedup—until we add correlations that boost

the ‘right’ states and cancel the rest.
* For that need quantum correlation: entanglement or discord.

Lo Pre-measurement probability distribution Post-measurement distribution (collapsed to |10))
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Fundamentals: Quantum Computing

* An n-qubit register has 2™ computational-basis states {|x): x € {0,1}"*}.

* Applying H to each qubit (H®") yields a uniform superposition with equal outcome
probability 1/2™ when measured in the computational basis.

* Uniform superposition is cool, but not a speedup—until we add correlations that boost
the ‘right’ states and cancel the rest.

* For that need quantum correlation: entanglement or discord.

 Use CNOT gate to create entanglement.

 CNOT logic: Flip the target qubit iff the control qubit is 1. (Control is unchanged.)

Lo Pre-measurement probability distribution Post-measurement distribution (collapsed to [11)})
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Fundamentals: Quantum Computing

Pre-measurement probability distribution Post-measurement distribution (collapsed to [11})
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Quantum entanglement is the phenomenon where the quantum state of each particle
in a group cannot be described independently of the state of the others, even when
the particles are separated by a large distance.

V) € H,; Q@ Hp is entangled iff it is not a product:

[V)ap # [W)a @ |P)5.

0 1
GI <H|0>)®|1>:%(|01>+|11>) CNOT ;75(201>+I10>)

N —ﬁ(IO)A®I1>B+I1>A®I0)B)-

*|01) is shorthand for |O)®|1).
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Fundamentals: Quantum Computing

Probability measurement (z=0.0)
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* Quantum correlation (discord) can be created without being in the entangled states.
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Figure 1: Quantum discord (8) versus the mixing parameter z for a 2-qubit quantum state [2].
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Fundamentals: Quantum Computing
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Figure 1: Quantum discord (8) versus the mixing parameter z for a 2-qubit quantum state [2].
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Fundamentals: Quantum Computing
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Fundamentals: Quantum Computing
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Three Papers

* Entanglement-based Advantage: H. Zhao and D.-L. Deng, “Entanglement-induced
provable and robust quantum learning advantages,” npj Quantum Inf, vol. 11, no. 1,
p. 127, Jul. 2025, doi: 10.1038/s41534-025-01078-x.

* Quantum No-free-lunch (NFL): K. Sharma, M. Cerezo, Z. Holmes, L. Cincio, A.
Sornborger, and P. J. Coles, “Reformulation of the No-Free-Lunch Theorem for
Entangled Datasets,” Phys. Rev. Lett., vol. 128, no. 7, p. 070501, Feb. 2022, doi:
10.1103/PhysRevlett.128.070501.

 Discord-based Advanatge: M. Karimi, A. Javadi-Abhari, C. Simon, and R. Ghobadi,
“The power of one clean qubit in supervised machine learning,” Sci Rep, vol. 13, no.
1, p. 19975, Nov. 2023, doi: 10.1038/s41598-023-46497-y.



Paper |I: Quantum Entanglement-based Advantage

Title: Entanglement-Induced Provable and Robust Quantum Learning Advantages

—[ Problem Statement J

Classical sequence learning models face a communication bottleneck where
internal latent dimension d must scale linearly, d=Q(n), with the input
sequence length n, limiting speed and efficiency.

| Solution Method }

Replace classical communication with  pre-computed quantum
entanglement. The model leverages the Mermin—Peres magic square
game to construct a simple sequence-to-sequence task. The quantum
model uses a constant-depth, O(1)-parameter quantum circuit with 2n
Bell pairs (n = sequence length).

. How Entanglement Solves it ]

Non-local correlations provided by entanglement substitute the need for
explicit communication required to coordinate remote parts of the input
sequence, reducing classical complexity from Q(n) to 0(1).
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Paper |I: Quantum Entanglement-based Advantage

The Mermin—Peres Magic Square Game

No communication
between Alice and Bob

[/

Win conditions (all must hold):

* Each row must have odd parity (the XOR of Alice’s
three bits = 1).

e Each column must have even parity (the XOR of

|t Bob’s three bits = 0).

At the intersection cell (row x4 ,column yg), their

bits agree.
x,y € {1,2,3},a,b € {0,1}3 1 1
X =Trownum,y = col num 0’ 0 1 0 0 1,0 0
1 0
x=2,y=1 X=2y=2

0,1 10,0 (1,1
0,0 11,1 0,0
1,1 {0,2 |01

(_ _) S. Purba: Quantum Correlations Enabling Quantum Advantage in Machine Learning

In the classical world, the best they could do was win 8/9 of the
time. But if Alice and Bob fix a quantum entangled state before
the game, the winning probability is 100% [3].

October 24, 2025

24



Paper |I: Quantum Entanglement-based Advantage

The Mermin—Peres Magic Square Game

Quantum Strategy:
{ |4 ]  Alice and Bob fix a quantum state |) € H; Q Hp :

1 1 1 1
1) = 10011) +>10110) + 1001 + 1100

e Alice can only measure the part of the quantum state
5 h in H4, and similarly for Bob.

1 1 I e Alice and Bob come up with measurements that they
will implement depending on what row/column the
referee assigns.

Example: Suppose the referee gives Alice row 2 and Bob column 3. Alice and Bob "rotate"
|Y) by X, @ Z3, and then the resulting quantum state "snaps" into one of these basis
vectors with equal probability (since the coefficients all have the same modulus).

Suppose X, Q Z3|yY) - [0110). They will win. This works for -
every A,ow & Z.,1, and every possible measurement outcome. 0 1 (0,0
1

x=2,y=3
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Paper |I: Quantum Entanglement-based Advantage

Translation of the Magic Square Game to QML
* Seqguence-to-Sequence Task Setup: The task R is a sequence translation problem,
R:{0,1}*" x {0,1}*"™ - {0, 1}, constructed as an n —fold parallel repetition of a sub-task,
R,. The input sequence x is split into two remote halves (Player A and Player B).
* Sequence Validity Condition: R(x,y) = 1: The sequence translation if and only if:
* All n parallel sub-tasks R are satisfied simultaneously.
* The i-th sub-task (R;) is satisfied if at least one of these holds:
* Trivial Case: Either input query x%or xZ (the two-bit queries for the sub-task) is
00
* Magic Square Rule: The coordinated outputs satisfy the index-mapped equality:

B _ A _ : .
Yi(xA) = Yii(xB) where, I(x) = 2x; + x, maps the 2-bit query to a specific

bit index {1, 2,3} of the opponent's 3-bit parity-constrained answer, confirming
non-local coordination.

— — 4y —
4n x 001001 0111 y ¢ BRI
x 011101 - 111010 |y titi il x> BiEim -
Tiisis Teiy (UG - G
* R y 1@@1 _Q_l@@ | EPR; — 4_ —
Yy 101010---001001 S xn — 4 —

Figure 2: Schematic overview of the machine learning tasks and models.
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Paper |I: Quantum Entanglement-based Advantage

Translation of the Magic Square Game to QML

* Sequence Validity Condition: R(x,y) = 1: The sequence translation if and only if:
* Alln parallel sub-tasks R are satisfied simultaneously.
* The i-th sub-task (R;) is satisfied if at least one of these holds:

* Trivial Case: Either input query x%or xZ (the two-bit queries for the sub-task) is
00

* Magic Square Rule: The coordinated outputs satisfy the index-mapped equality:
yg(xA)} = y(}(xg)}, where, I(x) = 2x; + x, maps the 2-bit query to a specific
bit index {01,10,11} => {1, 2,3} of the opponent's 3-bit parity-constrained
answer, confirming non-local coordination.

* Forexample:ifx =01,thenx; =0, x, =1=>1=1.

Example A - trivial (auto-valid)

Queries: x4 = 00, x5 = 10.
Because one query is 00, the sub-task is valid no matter what y,, yz are.
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Paper |I: Quantum Entanglement-based Advantage

Translation of the Magic Square Game to QML

* Sequence Validity Condition: R(x,y) = 1: The sequence translation if and only if:
* Alln parallel sub-tasks R are satisfied simultaneously.
* The i-th sub-task (R;) is satisfied if at least one of these holds:

* Trivial Case: Either input query x%or xZ (the two-bit queries for the sub-task) is
00

* Magic Square Rule: The coordinated outputs satisfy the index-mapped equality:
yg(xA)} = y(}(xg)}, where, I(x) = 2x; + x, maps the 2-bit query to a specific
bit index {01,10,11} => {1, 2,3} of the opponent's 3-bit parity-constrained
answer, confirming non-local coordination.

* Forexample:ifx =01,thenx; =0, x, =1=>1=1.

Example B - non-trivial and valid
Queries: x4, = 01 (soI(xy) =1),xg =11 (sol(xg) = 3).
Pick answers (2 bits each): y4, = (1,0),ys = (0,1).
Extend by parity:
yaz=100P1=0=y, =(10,0)
ve3=0P1=1=y; =(0,1,1).
Magic-square check:
compare yg[I(x,) = 1] with y,4[I(xg) = 3] : yg[1] = 0 and y,[3] = 0 = equal = valid.
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Paper |I: Quantum Entanglement-based Advantage

Translation of the Magic Square Game to QML

* Sequence Validity Condition: R(x,y) = 1: The sequence translation if and only if:
* Alln parallel sub-tasks R are satisfied simultaneously.
* The i-th sub-task (R;) is satisfied if at least one of these holds:

* Trivial Case: Either input query x%or xZ (the two-bit queries for the sub-task) is
00

* Magic Square Rule: The coordinated outputs satisfy the index-mapped equality:
yg(xA)} = y(}(xB)}; where, I(x) = 2x; + x, maps the 2-bit query to a specific

bit index {01,10,11} => {1, 2,3} of the opponent's 3-bit parity-constrained
answer, confirming non-local coordination.
* Forexample:ifx =01,thenx; =0, x, =1=>1=1.

Example C — non-trivial and invalid
Queries: x4 = 10(sol =2 ), xg =11 (sol = 3).
Pick answers: y4, = (0,0), yg = (0,0).
Extend:
Yz =0D0H1=1=y,=1(00,1)
vz =0 0=0=yz =(0,0,0)
Check: yglI(xs) = 2] = yg[2] = 0 vs y4[I(xg) = 3] = y4[3] = 1 = not equal = invalid.
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Paper |I: Quantum Entanglement-based Advantage

Translation of the Magic Square Game to QML

* Classical Bottleneck: Communication:
* C(Classical sequence models must use internal hidden states or latent dimensions d
that scale linearly ((n)) to carry long-range context and coordinate the two halves
(i.e., communication capacity ¢ = 0(d) = Q(n).
 Without this linearly increasing resource, the classical success probability decays
exponentially.

* Quantum Solution: Entanglement Substitution:

* Role of Pre-computed Bell Pairs (EPR States): Entanglement provides the perfect non-
local correlation necessary to coordinate the outputs of the two halves instantly.

« Why 2n Bell Pairs? The total task R is an n-fold parallel repetition of the basic magic
square sub-task, R,. Since the quantum winning strategy for the base sub-task
requires two Bell pairs to achieve certainty, the total resource scales linearly with the
sequence length n, requiring 2n Bell pairs.

e Qutcome: This resource substitution enables the quantum model to achieve a
perfect score (w" = 1) using a constant, O(1)-parameter circuit, replacing the
necessary (n) classical communication bits.
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Title: Entanglement-Induced Provable and Robust Quantum Learning Advantages

|

Theorem 1: Noiseless Inference J

For the magic square translation task R:{0,1}*" x {0,1}*" - {0,1}, there
exists an O(1)-parametersize quantum model M, that can achieve a
score S(]V[Q) = 1 using 2n Bell pairs. Meanwhile, any communication-

bounded classical model M that can achieve a score S(M,) = 27°M
must have (1(n) parameter size.

Main Idea

Establishes exponential separation in complexity (constant vs. linear scaling).
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Title: Entanglement-Induced Provable and Robust Quantum Learning Advantages

Theorem 2: Inference Advantage with Constant |
Noise J

For any noise strength p < p* = 0.0064, there exists a noisy magic square
translation task Ry: {0,1}*" x {0,1}*" — {0,1}, such that it can be solved
by an O(1)-parameter-size quantum model M, under depolarization
noise of strength p with score S(MQ) > 1 —27%M ysing 2n Bell pairs.
Meanwhile, any communication bounded classical model M, that can
achieve a score S(M,) = 27°(M) must have Q(n) parameter size.

Main Idea J

Demonstrates robustness; advantage persists under moderate, constant
noise levels.
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Title: Entanglement-Induced Provable and Robust Quantum Learning Advantages

Theorem 3: Training Advantage J

There exists a training algorithm that, with probability at least 2/3, takes
{(x(i),y(i))}ivzl with size M = @(nN) = 0(1) as input and outputs the
optimal quantum model M, for the task R. Moreover, the running time of
this training algorithmis T = 0(1).

Main Idea

Shows constant resource requirements for training the quantum model.
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Quantum Model:

Ti ]

T2

|0) IIH ot o’ £ Y1
U(lezL’z)

0 — [} :

T4

0) b o~ ? vs
U'(x3x4)

10) H—e” 2 Y4

Figure 3: lllustration of the quantum model for Ryunder depolarization noise of strength p.

Alg Scaling Formula Train Params Depth
Qc 0(1) Q x dim U(4) x |{0,1}?| 128 0(1)
=2X4X4 X4=128
GRU (1- Q(n?) ~3(h?> + mh+ h),h ~ 3 x 10* Q(n)
layer) xXn (withh =n,m <
4)
Enc-Dec Q(n?) ~2x 3(h? + mh + h) ~ 6 X 10* Q(n)(enc) +
Q(n)(dec)

Table 1: Comparative parameter count and depth for sequence length, n = 100.
h = hidden size; m=input size per step; Q=number of qubit
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The guantum model
achieves a perfect score on
this task while using about
two to three orders of
magnitude fewer trainable
params than GRU-based
autoregressive and
encoder—decoder

models—and its parameter
count stays constant as
inputs get longer.

Figure 4: Results on numerical simulations and trapped-ion experiments on lonQ Aria (a,b).
Performance of classical autoregressive (c) and encoder-decoder (d) models on the magic sgaure
translation task R with different problem size n and model size d.
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Critical Analysis:

Why the advantage arises:

* The proof reframes sequence learning as communication capacity: classical models must
carry information across the sequence; entanglement sidesteps this by reducing required
classical communication, so the quantum model’s parameters stay O(1)while classical
size must be Q(n).

Open questions:

* Task generality: Does the advantage hold beyond this very specific rule-based sequence
task?

* Continuous inputs: How do these results—proved for bitstring inputs/outputs—extend to
continuous inputs: which encoding (amplitude, angle, or basis) preserves the advantage,
and how does that encoding affect the communication lower bounds and overall quantum
advantage?

* Expressivity ceiling (gate set): Given the model uses only Clifford gates (Pauli->Pauli under
conjugation; generated by H, S, CNOT), can we add a minimal set of non-Clifford
operations while keeping constant parameter count and depth, and how would that
change expressivity and provable advantage?

* Noise tolerance: Can the advantage survive higher, device-realistic noise levels?
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Title: Reformulation of the No-Free-Lunch Theorem for Entangled Datasets

Classical No-Free-Lunch (NFL) Theorem:

* Learn an unknown function f: X — Y from a training
set S of t labeled examples; evaluate generalization via
the risk.

* Core claim (averaged over all S and all f ): the average
risk is lower-bounded only by dataset and alphabet
sizes-not by the learning method:

g Bl il = (1- ) (1- 1)

* More data (t) = lower average error; the bound hits 0
only when the training set covers the whole domain

(t = dy).
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Title: Reformulation of the No-Free-Lunch Theorem for Entangled Datasets

H Problem Statement }

The original Quantum No-Free-Lunch (Q-NFL) theorem suggested QML
required an exponential number of training samples (t = d = 2") to learn
an unknown unitary process completely.

{ Solution Method }

The reformulation addresses the task of learning an unknown unitary using
entangled training set. The Schmidt rank () quantifies the strength of
entanglement used as a resource.

L How Entanglement Solves it \

A single maximally entangled training pair (r = d) is theoretically sufficient
to uniquely specify the unknown unitary, drastically reducing sample
complexity.
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Title: Reformulation of the No-Free-Lunch Theorem for Entangled Datasets

—[ Theorem 1: Quantum NFL |

For d-dimensional input/output spaces and a training set S, of t input-
output pairs whose states all have Schmidt rank, r across H, @ Hg, the
average quantum risk of any perfectly trained hypothesis unitary VSQ

obeys

242 4 4 +1
Ey [IESQ [Ru (VsQ)” >1-- ;(d++ 1J;

The inequality is tight (saturated when the training inputs are linearly
independent).

- Main Idea |

Entanglement in the training data reduces the fundamental error floor: the
product rxt is the key resource. With no entanglement (r=1), vanishing
risk needs t=d (exponentially large). With maximal entanglement (r=d), a
single training pair can drive the lower bound to zero.
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Title: Reformulation of the No-Free-Lunch Theorem for Entangled Datasets

* Quantum risk Ry (VSQ) is nonnegative by definition because it is an average of squared trace
distances between the target unitary, U and hypothesis /. So, we can rewrite the Quantum NFL

theorem as:
E[R] = max{O 1-— ritt+dy 1}
- ’ d(d+ 1)
* Numerically, if we have only one training example, t = 1, and maximal entanglement (d =r =

8), then,

8212 +8+1 1

88+1)  72°
So,E[R] = 0.

a)

v to {THTHTH

%)

Y y.0) —H Vot
R :|0) — E

|15

Figure 5: Diagram of quantum circuits w/o ent (a), and with ent (b).

oS
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Paper Il: Entangled Data and Quantum NFL

* The average risk was calculated over 10 random unitaries and 10 random training sets
for the 2-dimensional implementation on the Rigetti quantum computer.

e QOver 10 random unitaries and 100 random training sets in the case of the 64-
dimensional implementation on the simulator.

* Baselines: Theoretical classical NFL bounds — deterministic/permutation maps and
stochastic maps (no specific classical ML models used).

+
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Figure 6: Average risk vs. training pairs t; entangled data outperforms unentangled and classical
baselines (left). Risk fluctuations drops as entanglement r and t increase (right).
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Critical Analysis:

Why the advantage arises:

* Entanglement turns process learning into state learning meaning an entangled input
probes all input directions at once. The bound depends only on r X t(effective
information), not on the learning algorithm.

Open questions:

* Imperfect training: If training isn’t exact, how does the bound deform?

* Noise & robustness: How do gate noise alter the r X t scaling? Can we derive noise-aware
lower bounds?

* Entangled dataset: Where do entangled datasets come from in practice? How can we
detect and use entangled signals in a real-world classical dataset?
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Title: The power of one clean qubit in supervised machine learning.

—L Problem Statement

Entanglement is highly susceptible to real-world noise (a major constraint in
the NISQ era). The challenge is developing an efficient, robust quantum
advantage for supervised learning that avoids fragile multi-qubit
measurements

{ Solution Method }

Use the minimal-resource Deterministic Quantum Computing with One
Qubit (DQC1) framework to estimate complex kernel functions for
classification. The architecture uses only a single, high-quality ("clean")
gubit, coupling it to a register of target qubits that can be in a mixed
(noisy) state.

How Discord Solves it

Quantum discord ensures robustness against noise, and the estimation cost
(shot complexity) is independent of the system size n (qubit count).

(_ _):-_-:f” S. Purba: Quantum Correlations Enabling Quantum Advantage in Machine Learning October 24, 2025 | 43



Paper lll: Quantum Discord-based Advantage

Title: The power of one clean qubit in supervised machine learning.

—[ Quantum Coherence J

It describes a system's ability to maintain a stable, synchronized phase
relationship between its quantum states, allowing it to exist in multiple
states simultaneously through superposition.

{ Theorem 1: Coherence Consumption Metric }

The change in coherence AC of the control qubit is directly linked to the kernel’s
discriminative power:

1—-|Kxx)|
AC(x,x") = H, > .
where H,(x) is the binary Shannon entropy, and |K(x,x")| is the kernel method
tr( U, (x,x’
which can also be expressed as K(x,x') = w
[ Main ldea j

If zero coherence is consumed, the kernel cannot learn.
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Title: The power of one clean qubit in supervised machine learning

Theorem 2: Discord-Coherence Trade-off J

Discord is bounded by consumed coherence:

D;(ps) < AC

where, D is geometric discord, a distance-based measure of “guantum-but-
not-entangled” correlations, and py is the final quantum state.

L Main ldea

The nonclassical correlation we create (quantum discord) is upper-bounded
by how much coherence we spend from the single clean qubit. This ties
the kernel signal we read out to a concrete resource—coherence—giving a
simple, hardware-friendly knob for performance vs. noise.
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Title: The power of one clean qubit in supervised machine learning.

e Suppose we build a data-dependent unitary:

n
U,(x) = exp iz i (x)Z; + iz Gix(X)Z;Zy,
j=1 j<k
where x is the classical data point (feature vector), and the functions ¢;(x) and ¢, (x) are
the feature maps that convert features of x (and pairwise interactions of features) into
rotation angles.

— H T N
b U,

7
In mn

Figure 6: The circuit representation of the DQC1 algorithm. The input states for control and target

11+2az’ with ¢ € [0,1] and ;—’;‘1, respectively. H and Z denote the Hadamard and Pauli Z gates.

gubits are
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Title: The power of one clean qubit in supervised machine learning.

* In DQC1, the control register is the single clean qubit (not a multi-qubit block) that
controls the data-dependent unitary acting on the mixed n-qubit register.

* The control is initialized in a partially pure state p. = %(1 + aZ) (purity a € [0,1] ),

apply a Hadamard, and couple it to the mixed register I /2™ via a controlled- U,,.
* The control qubit accumulates the global interference from U,,; its off-diagonals encode

tr(U,,)/2". Measuring only the control (e.g., X and Y ) gives

(X) = aRe (trg]l”)) ,{(Y) = —alm (tr;(i")), which is exactly the kernel entry we need.

}'1 + at
2

— H T N
b U,

/
In M

Figure 7: The circuit representation of the DQC1 algorithm. The input states for control and target
11+aZ

2

gubits are , with a € [0,1] and ;—’;‘1, respectively. H and Z denote the Hadamard and Pauli Z gates.
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Title: The power of one clean qubit in supervised machine learning.
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Figure 8: The accuracy as a function of the control qubit's purity for the “adhoc_dataset” is shown. Note
that when a = 0, the state is in a completely mixed state, and when a = 1, the state is pure. The blue
curve (square) indicates simulation results, and the red curve (circle) shows the results obtained from
IBM hardware.
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Critical Analysis:

Why the advantage arises:

 Measuring one qubit per kernel entry is a big advatange given readout is one of the
noisiest ops on superconducting devices. The shot complexity (0(e ?a~?log(1/§))) is
independent of the qubit size. This lowers readout noise and decouples sampling cost
from n, yielding a hardware-friendly estimator.

Open questions:

* Expressivity vs. robustness: When, precisely, do discord-based DQC1 kernels
underperform entanglement-dependent quantum kernels?

 Benchmarking vs. classical baselines: How do DQC1 kernels compare to strong classical
kernels regarding accuracy and computational speed?

 Benchmarking vs. other quantum methods: Where do DQC1 kernels sit relative to
alternative quantum kernel estimators?

* Role of the feature map on accuracy: How exactly does the choice of feature map Un(x)
impact the accuracy and generalization?
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Summary

QCorr Advantage Domain Mechanism of Advantage

NISQ Relevance

Entanglement Computational Speed in Substitutes Classical Communication
sequence translation task

Entanglement Data Efficiency Amplifies information per sample (r X t).
(Learning Theory)

Discord Noise Resilience Converts local Coherence into Correlation (DQC1)
(Kernel Estimation)

High robustness to constant
noise

Theoretical, sensitive to
noise

High, due to resilience in
mixed states

* Gap: Most proofs assume discrete data, perfect training conditions and a constant
device noise, but in practice, machine learning deals with continuous data, training

error and limited-noisy quantum hardware.

* We need a QML research roadmap that is theoretically complete, measurable, and

deployable.
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Roadmap

generalized data/encoding metric benchmarks  system application
learning theory

1) Generalized Q-NFL: bounds on
expected generalization risk as a function i ) )
of n (samples), usable correlation ¥ 1) Scalable encoding for continuous, high
(post-noise Schmidt rank), depth L, and D-data.

noise params 7. 2) Theory bound on diff. encoding
method (angle/amplitude) as a function
of accuracy and resource.

1) Eval metric beyond p-value and
classical statistical significance.

2) Quantum-native metrics such as
fidelity, coherence used, wall clock,
quantifiable Qcorr, energy consumption,
etc.

2) Generalized ML task-based advantage
theorem for training and inference.

1) Generate benchmark datasets using sl cloetin: [H2E srmel

tunable entanglement measures. 1) Hybrid pipeline. , . P
g it PP segmentation, multimodal classification.
2) Beyond MNIST classical dataset. 2) Entanglement for expressivity.
) Bey ) g P ¥ Success: accuracy at equal shots/wall-
2) Comprehensive classical and quantum 3) Discord for robustness with classical clock or { shots at equal accuracy.
algorithms’ performance on the head.

benchmark datasets.
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Closing Thoughts

QC Timeline: Noisy Intermediate-Scale Quantum (NISQ) — Fault Tolerance (projection)

We are here
NISQ era

1935 — Schrodinger 1964 — Bell's theorem  1981-82 — Feynman: 2009 — HHL quantum
‘cat' & entanglement l Simulating physics - QC linear-systems solver

l |
T T 2035 — Projected
fault-tolerant QC

1935 — EPR

(Einstein-Podolsky-Rosen) 1972 — Proof of entanglement 1991 — Ekert E91:

Entanglement-based QKD

T T T T T T
1940 1960 1380 2000 2020 2040
‘fear

SR
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Closing Thoughts

o

It’s too early to either claim or dismiss quantum
advantages for most ML tasks—uncertainty here is what
makes the field exciting.
Why are we interested in machine learning?

* “solve intelligence”, “wants to understand how the

human brain works”,..

By focusing on the human brain, we risk ignoring other
intelligences—animal cognition, plant
signaling/coordination, and non-biological forms [4].
Quantum ideas (e.g., Penrose-Hameroff Orch OR
hypothesis [5]) keep open the possibility that aspects of
cognition may exploit quantum effects.
Also, experimentally, scientists have discovered quantum
properties [6] in neurons—miraculously, these
properties persist despite the noisy environment.
None of this proves the brain is a quantum computer; it
simply argues against premature conclusions.
Because quantum mechanics underlies all physical
processes, it’s rational to explore guantum approaches
alongside classical ones in the quest for building artificial
general/super intelligence (AGI/ASI).
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