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Definitions: Quantum Advantages (QA)

• Quantum refers to the principles of quantum mechanics, the physics governing 
subatomic particles like electrons and photons. 

• Many physicists and computer scientists describe quantum mechanics as a 
generalization of classical probability theory.

• Quantum mechanics deals with two fundamental properties of subatomic particles. 
• Superposition 
• Entanglement

• Quantum computing is a type of computation that uses the principles of quantum 
mechanics to process information in ways that classical computers cannot. 

• In quantum computing, quantum advantage is the goal of demonstrating that a 
programmable quantum computer can solve a problem that no classical computer can 
solve in any feasible amount of time, irrespective of the usefulness of the problem. 

• The term was coined by John Preskill in 2011, but the concept dates to Yuri Manin's 
1980 and Richard Feynman's 1981 proposals of quantum computing.
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Definitions: Quantum Advantages (QA)

Example Problem Type Advantage Over 
Classical

Current Status

Random Circuit Sampling 
(Google Sycamore, 2019)

Sampling from random 
quantum circuits (benchmark 
task)

Performed in 200 seconds, 
estimated 10,000 years on a 
classical supercomputer

Achieved – Demonstration of 
quantum supremacy

Searching an unsorted 
database for a specific entry
(Grover’s Algorithm, 1996)

Unstructured search / 
optimization

Quadratic speedup: classical 
search requires 𝑂𝑂 𝑁𝑁  queries; 
Grover’s requires only 𝑂𝑂(√N)

Demonstrated on small-scale 
NISQ devices (up to a few 
qubits).

Integer Factorization (Shor’s 
Algorithm, 1994)

Factoring large integers (used 
in encryption)

Exponential speedup over best-
known classical methods

Theoretical – Not yet realized 
at scale

Q-Day!!

𝐴𝐴𝐴𝐴𝑔𝑔𝑐𝑐 𝐴𝐴𝐴𝐴𝑔𝑔𝑞𝑞

𝑶𝑶(𝑵𝑵𝟑𝟑)

𝑶𝑶(𝑵𝑵𝟑𝟑)
𝑶𝑶(𝒍𝒍𝒍𝒍𝒍𝒍(𝑵𝑵))
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Definitions: Quantum Correlations (QCorr)

• Classical correlation is a statistical measure that describes the extent to which two or 
more random variables are linearly related—meaning they tend to change together.

• this statistical measure obeys classical probability theory and local-realism theory*,
• it describes joint statistics of separate entities.
• e.g., coin toss results that depend on each other

• Quantum correlation is a general term in quantum mechanics that refers to non-classical 
statistical relationships between two or more quantum particles.

• can violate local-realism theory, demonstrating nonlocality,
• correlations physically entangle subsystems so that their total information exists 

only in the global state — not in any part alone.
• e.g., two quantum dice always rolling the same number no matter how far apart 

they are

• The strongest form of quantum correlation is quantum entanglement.

• A more general type of quantum correlation that can exist even in separable (non-
entangled) states is quantum discord.

* Things have definite properties (realism), and those properties can only be influenced by nearby events (locality).
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Motivations

• The goal of ML task is to model the distribution 𝑝𝑝(𝑦𝑦|𝑥𝑥) using a parameterized 
classical model 𝑝𝑝θ y x  based on a set of training data 𝑥𝑥(𝑖𝑖),𝑦𝑦(𝑖𝑖)

𝑖𝑖=1
𝑁𝑁 , 𝑥𝑥 ∼ 𝑝𝑝 𝑥𝑥 , 𝑦𝑦

∼ 𝑝𝑝 𝑦𝑦 𝑥𝑥 .

• This is achieved by tuning the parameter θ to minimize certain loss function that 
represents how far 𝑝𝑝θ is from 𝑝𝑝.

• Classical models rely on joint and conditional probabilities 
• capture only statistical dependence, not intrinsic physical relationships
• correlations are local— information is shared only through explicit data 

features or parameters
• constrained by the curse of dimensionality — scaling poorly with data size 

and complexity

Can non-local quantum correlations provide a technological or quantum advantage 
for machine learning tasks?
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Motivations

• In quantum ML (QML), quantum advantage is the ability of quantum systems to 
perform learning tasks faster, with fewer resources, or greater accuracy.

• Quantum correlations (entanglement, discord) allow nonlocal dependencies — 
relationships that can’t be described by classical probability distributions.

• can learn information beyond the training distribution,
• store and process information globally across subsystems, rather than locally per 

variable, enhancing model expressivity

• Phase correlations allow constructive/destructive interference
• boosting learning efficiency and speedup

• Entanglement-based correlations provide 
• coherent information transfer,
• reducing energy and communication costs compared to classical models
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Motivations

• Entanglement-based Advantage: H. Zhao and D.-L. Deng, “Entanglement-induced 
provable and robust quantum learning advantages,” npj Quantum Inf, vol. 11, no. 1, 
p. 127, Jul. 2025, doi: 10.1038/s41534-025-01078-x.

• Quantum No-free-lunch (NFL): K. Sharma, M. Cerezo, Z. Holmes, L. Cincio, A. 
Sornborger, and P. J. Coles, “Reformulation of the No-Free-Lunch Theorem for 
Entangled Datasets,” Phys. Rev. Lett., vol. 128, no. 7, p. 070501, Feb. 2022, doi: 
10.1103/PhysRevLett.128.070501.

• Discord-based Advantage: M. Karimi, A. Javadi-Abhari, C. Simon, and R. Ghobadi, 
“The power of one clean qubit in supervised machine learning,” Sci Rep, vol. 13, no. 
1, p. 19975, Nov. 2023, doi: 10.1038/s41598-023-46497-y.
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Fundamentals: Quantum Computing
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Fundamentals: Quantum Computing

first-ever direct visualization of an electron orbital

𝜓𝜓 = 𝛼𝛼 0 + 𝛽𝛽 1

Quantum bit 
(qubit)

Probability 
amplitude

𝜓𝜓  (𝑠𝑠𝑠𝑠𝑠𝑠𝑠) is the quantum state 
encoding the information about a 
quantum particle.
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Fundamentals: Quantum Computing

classical bit vs qubit [1]

In the computational basis,

|0⟩ = 1
0 , |1⟩ = 0

1
0 : The probability of finding the qubit in ground state or up-spin is 100%.
1 : The probability of finding the qubit in excited state or down-spin is 100%.

More generally, a qubit |𝜓𝜓⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩ is
𝜓𝜓 =

𝛼𝛼
𝛽𝛽 , 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑝𝑝0 = 𝛼𝛼|2, 𝑝𝑝1= 𝛽𝛽|2, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝0 + 𝑝𝑝1 = 1

Quantum state is represented as |. ⟩ dirac notation. 
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Fundamentals: Quantum Computing
• The Bloch sphere gives a way of describing a single-qubit quantum state (which is a two-dimensional 

complex vector) as a three-dimensional real-valued vector.
• Quantum circuit/model is a sequence of linear transformations using quantum gates on the qubits, 

followed by measurements to extract a classical outcome.
• Common quantum gates (MUST be unitary):

• Hadamard (𝐻𝐻): create superposition (e.g., |0⟩  →  ( |0⟩  +  |1⟩ )/√2).
• Pauli X, Y, Z: single-qubit rotations around 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 axes.
• CNOT (Controlled-Not), CZ: two-qubit gate; flip the target if the control qubit is 1 ; creates 

entanglement.
• Why must quantum gates be unitary?

• Reversibility: Quantum evolution is information-preserving; unitary 𝑈𝑈 ensures a unique inverse 𝑈𝑈†.
• Probability conservation: Unitarity enforces 𝑈𝑈†𝑈𝑈 = 𝐼𝐼, keeping total probability = 1.

• How is measurement performed (computational basis):
• Measure each qubit in the Z basis { 0 , 1 }.
• The state collapses to |0⟩ or |1⟩ with probabilities given by the squared amplitudes.
• Repeated shots (many runs) build histograms to estimate outcome probabilities.

A quantum circuit A Bloch sphere

H
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Fundamentals: Quantum Computing

H 𝐻𝐻 0 = 1 0  ⋅ 1
2

1 1
1 −1  = 

1
2
1
2

 
Probability amplitude, 𝛼𝛼 = β = 1

2
Thus, probability, 𝑝𝑝0 = 𝑝𝑝1 = 0.5 = 50%

A qubit can be in a state of both 0 and 1 at the same time, a phenomenon called 
superposition.

< 𝑴𝑴 >
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Fundamentals: Quantum Computing

< 𝑴𝑴 >

• An 𝑛𝑛-qubit register has 2𝑛𝑛 computational-basis states |𝑥𝑥⟩: 𝑥𝑥 ∈ {0,1}𝑛𝑛 .
• Applying 𝐻𝐻 to each qubit 𝐻𝐻⊗𝑛𝑛  yields a uniform superposition with equal outcome 

probability 1/2𝑛𝑛 when measured in the computational basis. 
• Uniform superposition is cool, but not a speedup—until we add correlations that boost 

the ‘right’ states and cancel the rest.
• For that need quantum correlation: entanglement or discord. 
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Fundamentals: Quantum Computing

< 𝑴𝑴 >

• An 𝑛𝑛-qubit register has 2𝑛𝑛 computational-basis states |𝑥𝑥⟩: 𝑥𝑥 ∈ {0,1}𝑛𝑛 .
• Applying 𝐻𝐻 to each qubit 𝐻𝐻⊗𝑛𝑛  yields a uniform superposition with equal outcome 

probability 1/2𝑛𝑛 when measured in the computational basis. 
• Uniform superposition is cool, but not a speedup—until we add correlations that boost 

the ‘right’ states and cancel the rest.
• For that need quantum correlation: entanglement or discord. 
• Use CNOT gate to create entanglement.
• CNOT logic: Flip the target qubit iff the control qubit is 1. (Control is unchanged.)

control

target
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Fundamentals: Quantum Computing

< 𝑴𝑴 >

control

target

• Quantum entanglement is the phenomenon where the quantum state of each particle 
in a group cannot be described independently of the state of the others, even when 
the particles are separated by a large distance.

• |𝜓𝜓⟩ ∈ ℋ𝐴𝐴 ⊗ℋ𝐵𝐵 is entangled iff it is not a product:
𝜓𝜓 𝐴𝐴𝐴𝐴 ≠ 𝜓𝜓 𝐴𝐴 ⊗ 𝜓𝜓 𝐵𝐵 . 

𝑯𝑯|𝟎𝟎⟩ ⊗ 𝟏𝟏 1
2
( 01 + 11 ) 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪

1
2
( 01 + 10 ) 

=
1
2

|0⟩𝐴𝐴 ⊗ |1⟩𝐵𝐵 + |1⟩𝐴𝐴 ⊗ |0⟩𝐵𝐵 .

.*�01⟩ � is shorthand for 0⟩ �⊗ 1⟩. 
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Fundamentals: Quantum Computing

• Quantum correlation (discord) can be created without being in the entangled states. 

Figure 1: Quantum discord (δ) versus the mixing parameter z for a 2-qubit quantum state [2].
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Fundamentals: Quantum Computing

• Quantum correlation (discord) can be created without being in the entangled states. 

Figure 1: Quantum discord (δ) versus the mixing parameter z for a 2-qubit quantum state [2].
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Paper I: Quantum Entanglement-based Advantage

Title: Entanglement-Induced Provable and Robust Quantum Learning Advantages

Classical sequence learning models face a communication bottleneck where
internal latent dimension 𝑑𝑑 must scale linearly, 𝑑𝑑=Ω(𝑛𝑛), with the input
sequence length 𝑛𝑛, limiting speed and efficiency.

Problem Statement

Replace classical communication with pre-computed quantum
entanglement. The model leverages the Mermin–Peres magic square
game to construct a simple sequence-to-sequence task. The quantum
model uses a constant-depth, 𝑂𝑂(1)-parameter quantum circuit with 2𝑛𝑛
Bell pairs (𝑛𝑛 = sequence length).

Solution Method

Non-local correlations provided by entanglement substitute the need for 
explicit communication required to coordinate remote parts of the input 
sequence, reducing classical complexity from Ω(𝑛𝑛) to 𝑂𝑂 1 .

How Entanglement Solves it



S. Purba: Quantum Correlations Enabling Quantum Advantage in Machine Learning October 24, 2025 24

Paper I: Quantum Entanglement-based Advantage

The Mermin–Peres Magic Square Game

1
0, 0 1 0

1

Win conditions (all must hold):
• Each row must have odd parity (the XOR of Alice’s 

three bits = 1).
• Each column must have even parity (the XOR of 

Bob’s three bits = 0).
• At the intersection cell (row 𝑥𝑥𝐴𝐴 ,column 𝑦𝑦𝐵𝐵), their 

bits agree.

𝑥𝑥,𝑦𝑦 ∈ 1,2,3 , a, b ∈ 0, 1 3

                  𝑥𝑥 = 𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛,𝑦𝑦 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛
 

1
0 1,0 0

0

𝑥𝑥 = 2, 𝑦𝑦 = 1 𝑥𝑥 = 2, 𝑦𝑦 = 2

In the classical world, the best they could do was win 8/9 of the 
time.  But if Alice and Bob fix a quantum entangled state before 
the game, the winning probability is 100% [3].

0,1 0,0 1,1
0, 0 1,1 0,0
1, 1 0,1 0,1
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Paper I: Quantum Entanglement-based Advantage

The Mermin–Peres Magic Square Game

Quantum Strategy:
• Alice and Bob fix a quantum state |𝜓𝜓⟩ ∈ ℋ𝐴𝐴 ⊗ℋ𝐵𝐵 :

𝜓𝜓 =
1
2

0011 +
1
2

0110 +
1
2

|1001⟩ +
1
2

|1100⟩
• Alice can only measure the part of the quantum state 

in ℋ𝐴𝐴, and similarly for Bob.
• Alice and Bob come up with measurements that they 

will implement depending on what row/column the 
referee assigns.

Example: Suppose the referee gives Alice row 2 and Bob column 3. Alice and Bob "rotate" 
|𝜓𝜓⟩ by 𝑋𝑋2 ⊗ 𝑍𝑍3, and then the resulting quantum state "snaps" into one of these basis 
vectors with equal probability (since the coefficients all have the same modulus).

Suppose 𝑋𝑋2 ⊗ 𝑍𝑍3|𝜓𝜓⟩ ↦ |0110⟩. They will win. This works for 
every 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 ⊗ 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐, and every possible measurement outcome.

1
0 1 0, 0

1

𝑥𝑥 = 2, 𝑦𝑦 = 3
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Paper I: Quantum Entanglement-based Advantage

Translation of the Magic Square Game to QML
• Sequence-to-Sequence Task Setup: The task 𝑅𝑅 is a sequence translation problem, 

𝑅𝑅: 0, 1 4𝑛𝑛 𝑥𝑥 0, 1 4𝑛𝑛  → {0, 1}, constructed as an 𝑛𝑛 −fold parallel repetition of a sub-task, 
𝑅𝑅0. The input sequence 𝑥𝑥 is split into two remote halves (Player A and Player B).

• Sequence Validity Condition: 𝑅𝑅(𝑥𝑥, 𝑦𝑦) = 1: The sequence translation if and only if:
• All 𝑛𝑛 parallel sub-tasks 𝑅𝑅0 are satisfied simultaneously.
• The 𝑖𝑖-th sub-task (𝑅𝑅𝑖𝑖) is satisfied if at least one of these holds:

• Trivial Case: Either input query 𝑥𝑥𝐴𝐴or 𝑥𝑥𝐵𝐵 (the two-bit queries for the sub-task) is 
00

• Magic Square Rule: The coordinated outputs satisfy the index-mapped equality: 
𝑦𝑦 𝐼𝐼 𝑥𝑥𝐴𝐴
𝐵𝐵 =  𝑦𝑦 𝐼𝐼 𝑥𝑥𝐵𝐵

𝐴𝐴 , where, 𝐼𝐼 𝑥𝑥 = 2𝑥𝑥1 + 𝑥𝑥2 maps the 2-bit query to a specific 
bit index {1, 2, 3} of the opponent's 3-bit parity-constrained answer, confirming 
non-local coordination.

Figure 2: Schematic overview of the machine learning tasks and models.
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Paper I: Quantum Entanglement-based Advantage

Translation of the Magic Square Game to QML
• Sequence Validity Condition: 𝑅𝑅(𝑥𝑥, 𝑦𝑦) = 1: The sequence translation if and only if:

• All 𝑛𝑛 parallel sub-tasks 𝑅𝑅0 are satisfied simultaneously.
• The 𝑖𝑖-th sub-task (𝑅𝑅𝑖𝑖) is satisfied if at least one of these holds:

• Trivial Case: Either input query 𝑥𝑥𝐴𝐴or 𝑥𝑥𝐵𝐵 (the two-bit queries for the sub-task) is 
00

• Magic Square Rule: The coordinated outputs satisfy the index-mapped equality: 
𝑦𝑦 𝐼𝐼 𝑥𝑥𝐴𝐴
𝐵𝐵 =  𝑦𝑦 𝐼𝐼 𝑥𝑥𝐵𝐵

𝐴𝐴 , where, 𝐼𝐼 𝑥𝑥 = 2𝑥𝑥1 + 𝑥𝑥2 maps the 2-bit query to a specific 
bit index {01, 10, 11}  =>  {1, 2, 3} of the opponent's 3-bit parity-constrained 
answer, confirming non-local coordination.

• For example: if 𝑥𝑥 = 01, then 𝑥𝑥1 = 0, 𝑥𝑥2 = 1 ⇒ 𝐼𝐼 = 1.

Example A - trivial (auto-valid)
Queries: 𝑥𝑥𝐴𝐴 = 00, 𝑥𝑥𝐵𝐵 = 10.
Because one query is 00 , the sub-task is valid no matter what 𝑦𝑦𝐴𝐴,𝑦𝑦𝐵𝐵 are.
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Paper I: Quantum Entanglement-based Advantage

Translation of the Magic Square Game to QML
• Sequence Validity Condition: 𝑅𝑅(𝑥𝑥, 𝑦𝑦) = 1: The sequence translation if and only if:

• All 𝑛𝑛 parallel sub-tasks 𝑅𝑅0 are satisfied simultaneously.
• The 𝑖𝑖-th sub-task (𝑅𝑅𝑖𝑖) is satisfied if at least one of these holds:

• Trivial Case: Either input query 𝑥𝑥𝐴𝐴or 𝑥𝑥𝐵𝐵 (the two-bit queries for the sub-task) is 
00

• Magic Square Rule: The coordinated outputs satisfy the index-mapped equality: 
𝑦𝑦 𝐼𝐼 𝑥𝑥𝐴𝐴
𝐵𝐵 =  𝑦𝑦 𝐼𝐼 𝑥𝑥𝐵𝐵

𝐴𝐴 , where, 𝐼𝐼 𝑥𝑥 = 2𝑥𝑥1 + 𝑥𝑥2 maps the 2-bit query to a specific 
bit index {01, 10, 11}  =>  {1, 2, 3} of the opponent's 3-bit parity-constrained 
answer, confirming non-local coordination.

• For example: if 𝑥𝑥 = 01, then 𝑥𝑥1 = 0, 𝑥𝑥2 = 1 ⇒ 𝐼𝐼 = 1.

Example B - non-trivial and valid
Queries: 𝑥𝑥𝐴𝐴 = 01 (so 𝐼𝐼 𝑥𝑥𝐴𝐴 = 1 ), 𝑥𝑥𝐵𝐵 = 11 (so 𝐼𝐼 𝑥𝑥𝐵𝐵 = 3 ).
Pick answers (2 bits each): 𝑦𝑦𝐴𝐴 = (1,0),𝑦𝑦𝐵𝐵 = (0,1).
Extend by parity:

𝑦𝑦𝐴𝐴3 = 1 ⊕ 0 ⊕ 1 = 0 ⇒ 𝑦𝑦𝐴𝐴 = (1,0,0)
𝑦𝑦𝐵𝐵3 = 0 ⊕ 1 = 1 ⇒ 𝑦𝑦𝐵𝐵 = (0,1,1).

Magic-square check: 
compare 𝑦𝑦𝐵𝐵 𝐼𝐼 𝑥𝑥𝐴𝐴 = 1  with 𝑦𝑦𝐴𝐴 𝐼𝐼 𝑥𝑥𝐵𝐵 = 3  : 𝑦𝑦𝐵𝐵[1] = 0 and 𝑦𝑦𝐴𝐴[3] = 0 ⇒ equal ⇒ valid.
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Translation of the Magic Square Game to QML
• Sequence Validity Condition: 𝑅𝑅(𝑥𝑥, 𝑦𝑦) = 1: The sequence translation if and only if:

• All 𝑛𝑛 parallel sub-tasks 𝑅𝑅0 are satisfied simultaneously.
• The 𝑖𝑖-th sub-task (𝑅𝑅𝑖𝑖) is satisfied if at least one of these holds:

• Trivial Case: Either input query 𝑥𝑥𝐴𝐴or 𝑥𝑥𝐵𝐵 (the two-bit queries for the sub-task) is 
00

• Magic Square Rule: The coordinated outputs satisfy the index-mapped equality: 
𝑦𝑦 𝐼𝐼 𝑥𝑥𝐴𝐴
𝐵𝐵 =  𝑦𝑦 𝐼𝐼 𝑥𝑥𝐵𝐵

𝐴𝐴 , where, 𝐼𝐼 𝑥𝑥 = 2𝑥𝑥1 + 𝑥𝑥2 maps the 2-bit query to a specific 
bit index {01, 10, 11}  =>  {1, 2, 3} of the opponent's 3-bit parity-constrained 
answer, confirming non-local coordination.

• For example: if 𝑥𝑥 = 01, then 𝑥𝑥1 = 0, 𝑥𝑥2 = 1 ⇒ 𝐼𝐼 = 1.

Example C — non-trivial and invalid
Queries: 𝑥𝑥𝐴𝐴 = 10 (so 𝐼𝐼 = 2 ), 𝑥𝑥𝐵𝐵 = 11 (so 𝐼𝐼 = 3 ).
Pick answers: 𝑦𝑦𝐴𝐴 = (0,0),𝑦𝑦𝐵𝐵 = (0,0).
Extend:

𝑦𝑦𝐴𝐴3 = 0 ⊕ 0 ⊕ 1 = 1 ⇒ 𝑦𝑦𝐴𝐴 = (0,0,1)
𝑦𝑦𝐵𝐵3 = 0 ⊕ 0 = 0 ⇒ 𝑦𝑦𝐵𝐵 = (0,0,0)

Check: 𝑦𝑦𝐵𝐵 𝐼𝐼 𝑥𝑥𝐴𝐴 = 2 = 𝑦𝑦𝐵𝐵[2] = 0 vs 𝑦𝑦𝐴𝐴 𝐼𝐼 𝑥𝑥𝐵𝐵 = 3 = 𝑦𝑦𝐴𝐴[3] = 1 ⇒ not equal ⇒ invalid.
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Translation of the Magic Square Game to QML

• Classical Bottleneck: Communication:
• Classical sequence models must use internal hidden states or latent dimensions 𝑑𝑑 

that scale linearly (Ω(𝑛𝑛)) to carry long-range context and coordinate the two halves 
(i.e., communication capacity 𝑐𝑐 = 𝑂𝑂 𝑑𝑑 ≥ Ω 𝑛𝑛 .

• Without this linearly increasing resource, the classical success probability decays 
exponentially. 

• Quantum Solution: Entanglement Substitution:
• Role of Pre-computed Bell Pairs (EPR States): Entanglement provides the perfect non-

local correlation necessary to coordinate the outputs of the two halves instantly.
• Why 2𝑛𝑛 Bell Pairs? The total task 𝑅𝑅 is an 𝑛𝑛-fold parallel repetition of the basic magic 

square sub-task, 𝑅𝑅0. Since the quantum winning strategy for the base sub-task 
requires two Bell pairs to achieve certainty, the total resource scales linearly with the 
sequence length 𝑛𝑛, requiring 2𝑛𝑛 Bell pairs.

• Outcome: This resource substitution enables the quantum model to achieve a 
perfect score (𝜔𝜔∗ = 1) using a constant, 𝑂𝑂(1)-parameter circuit, replacing the 
necessary Ω 𝑛𝑛  classical communication bits.



S. Purba: Quantum Correlations Enabling Quantum Advantage in Machine Learning October 24, 2025 31

Paper I: Quantum Entanglement-based Advantage

Title: Entanglement-Induced Provable and Robust Quantum Learning Advantages

For the magic square translation task 𝑅𝑅: {0,1}4𝑛𝑛 × {0,1}4𝑛𝑛 → {0,1}, there
exists an 𝑂𝑂(1)-parametersize quantum model ℳ𝑄𝑄 that can achieve a
score 𝑆𝑆 ℳ𝑄𝑄 = 1 using 2𝑛𝑛 Bell pairs. Meanwhile, any communication-
bounded classical model ℳ𝐶𝐶 that can achieve a score 𝑆𝑆 ℳ𝐶𝐶 ≥ 2−𝑜𝑜(𝑛𝑛)

must have Ω(𝑛𝑛) parameter size.

Theorem 1: Noiseless Inference

Establishes exponential separation in complexity (constant vs. linear scaling).

Main Idea
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Paper I: Quantum Entanglement-based Advantage

Title: Entanglement-Induced Provable and Robust Quantum Learning Advantages

For any noise strength 𝑝𝑝 ≤ 𝑝𝑝⋆ ≈ 0.0064, there exists a noisy magic square
translation task 𝑅𝑅𝑝𝑝: {0,1}4𝑛𝑛 × {0,1}4𝑛𝑛 → {0,1}, such that it can be solved
by an 𝑂𝑂(1)-parameter-size quantum model ℳ𝑄𝑄 under depolarization
noise of strength 𝑝𝑝 with score 𝑆𝑆 ℳ𝑄𝑄 ≥ 1 − 2−Ω(𝑛𝑛) using 2𝑛𝑛 Bell pairs.
Meanwhile, any communication bounded classical model ℳ𝐶𝐶 that can
achieve a score 𝑆𝑆 ℳ𝐶𝐶 ≥ 2−𝑜𝑜(𝑛𝑛) must have Ω(𝑛𝑛) parameter size.

Theorem 2: Inference Advantage with Constant 
Noise 

Demonstrates robustness; advantage persists under moderate, constant
noise levels.

Main Idea
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Title: Entanglement-Induced Provable and Robust Quantum Learning Advantages

There exists a training algorithm that, with probability at least 2/3, takes
𝑥𝑥(𝑖𝑖),𝑦𝑦(𝑖𝑖)

𝑖𝑖=1
𝑁𝑁

with size 𝑀𝑀 = Θ(𝑛𝑛𝑛𝑛) = 𝑂𝑂(1) as input and outputs the
optimal quantum model ℳ𝑄𝑄 for the task 𝑅𝑅. Moreover, the running time of
this training algorithm is 𝑇𝑇 = 𝑂𝑂(1).

Theorem 3: Training Advantage 

Shows constant resource requirements for training the quantum model.

Main Idea
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Quantum Model:

Figure 3: Illustration of the quantum model for 𝑅𝑅0under depolarization noise of strength 𝑝𝑝.

Alg Scaling Formula Train Params Depth
QC 𝑂𝑂(1) 𝑄𝑄 × dim𝑈𝑈 4 × 0,1 2

= 2 × 4 × 4 × 4 = 128
128 𝑂𝑂(1)

GRU (1-
layer)

Ω 𝑛𝑛2 ~3 ℎ2 + 𝑚𝑚𝑚 + ℎ ,ℎ 
∝ 𝑛𝑛

∼ 3 × 104
 (with ℎ = 𝑛𝑛,𝑚𝑚 ≤

4)

Ω(𝑛𝑛)

Enc-Dec Ω(𝑛𝑛2) ~ 2 × 3 ℎ2 + 𝑚𝑚𝑚 + ℎ ∼ 6 × 104 Ω 𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒 +
Ω 𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑

Table 1: Comparative parameter count and depth for sequence length, 𝑛𝑛 = 100. 
ℎ = hidden size; 𝑚𝑚= input size per step; 𝑄𝑄=number of qubit
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Figure 4: Results on numerical simulations and trapped-ion experiments on IonQ Aria (a,b). 
Performance of classical autoregressive (c) and encoder-decoder (d) models on the magic sqaure 
translation task 𝑅𝑅 with different problem size 𝑛𝑛 and model size 𝑑𝑑.

The quantum model 
achieves a perfect score on 
this task while using about 
two to three orders of 
magnitude fewer trainable 
params than GRU-based 
autoregressive and 
encoder–decoder 
models—and its parameter 
count stays constant as 
inputs get longer.
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Critical Analysis:

Why the advantage arises:
• The proof reframes sequence learning as communication capacity: classical models must 

carry information across the sequence; entanglement sidesteps this by reducing required 
classical communication, so the quantum model’s parameters stay 𝑂𝑂 1 while classical 
size must be Ω(𝑛𝑛).

Open questions:
• Task generality: Does the advantage hold beyond this very specific rule-based sequence 

task?
• Continuous inputs: How do these results—proved for bitstring inputs/outputs—extend to 

continuous inputs: which encoding (amplitude, angle, or basis) preserves the advantage, 
and how does that encoding affect the communication lower bounds and overall quantum 
advantage?

• Expressivity ceiling (gate set): Given the model uses only Clifford gates (Pauli→Pauli under 
conjugation; generated by H, S, CNOT), can we add a minimal set of non-Clifford 
operations while keeping constant parameter count and depth, and how would that 
change expressivity and provable advantage?

• Noise tolerance: Can the advantage survive higher, device-realistic noise levels?
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Paper II: Entangled Data and Quantum NFL

Title: Reformulation of the No-Free-Lunch Theorem for Entangled Datasets

Classical No-Free-Lunch (NFL) Theorem:
• Learn an unknown function 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 from a training 

set 𝑆𝑆 of 𝑡𝑡 labeled examples; evaluate generalization via 
the risk.

• Core claim (averaged over all 𝑆𝑆 and all 𝑓𝑓 ): the average 
risk is lower-bounded only by dataset and alphabet 
sizes-not by the learning method:

𝔼𝔼𝑓𝑓 𝔼𝔼𝑆𝑆 𝑅𝑅𝑓𝑓 ℎ𝑆𝑆 ≥ 1 −
1
𝑑𝑑𝑌𝑌

1 −
𝑡𝑡
𝑑𝑑𝑋𝑋

• More data (𝑡𝑡) ⇒ lower average error; the bound hits 0 
only when the training set covers the whole domain 
𝑡𝑡 = 𝑑𝑑𝑋𝑋 .
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Paper II: Entangled Data and Quantum NFL

Title: Reformulation of the No-Free-Lunch Theorem for Entangled Datasets

The original Quantum No-Free-Lunch (Q-NFL) theorem suggested QML
required an exponential number of training samples (𝑡𝑡 = 𝑑𝑑 = 2𝑛𝑛) to learn
an unknown unitary process completely.

Problem Statement

The reformulation addresses the task of learning an unknown unitary using
entangled training set. The Schmidt rank 𝑟𝑟 quantifies the strength of
entanglement used as a resource.

Solution Method

A single maximally entangled training pair (𝑟𝑟 = 𝑑𝑑) is theoretically sufficient 
to uniquely specify the unknown unitary, drastically reducing sample 
complexity.

How Entanglement Solves it
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Title: Reformulation of the No-Free-Lunch Theorem for Entangled Datasets

For 𝑑𝑑-dimensional input/output spaces and a training set 𝒮𝒮𝑄𝑄 of 𝑡𝑡 input-
output pairs whose states all have Schmidt rank, 𝑟𝑟 across ℋ𝒳𝒳 ⊗ℋℛ, the 
average quantum risk of any perfectly trained hypothesis unitary 𝑉𝑉𝒮𝒮𝑄𝑄 
obeys

𝔼𝔼𝑈𝑈 𝔼𝔼𝒮𝒮𝑄𝑄 𝑅𝑅𝑈𝑈 𝑉𝑉𝒮𝒮𝑄𝑄 ≥ 1 −
𝑟𝑟2𝑡𝑡2 + 𝑑𝑑 + 1
𝑑𝑑(𝑑𝑑 + 1)

The inequality is tight (saturated when the training inputs are linearly 
independent).

Theorem 1: Quantum NFL

Entanglement in the training data reduces the fundamental error floor: the
product 𝑟𝑟×𝑡𝑡 is the key resource. With no entanglement (𝑟𝑟=1), vanishing
risk needs 𝑡𝑡=𝑑𝑑 (exponentially large). With maximal entanglement (𝑟𝑟=𝑑𝑑), a
single training pair can drive the lower bound to zero.

Main Idea
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Title: Reformulation of the No-Free-Lunch Theorem for Entangled Datasets

• Quantum risk 𝑅𝑅𝑈𝑈 𝑉𝑉𝒮𝒮𝑄𝑄  is nonnegative by definition because it is an average of squared trace 
distances between the target unitary, 𝑈𝑈 and hypothesis 𝑉𝑉. So, we can rewrite the Quantum NFL 
theorem as: 

𝔼𝔼 𝑅𝑅 ≥ max 0, 1 −
𝑟𝑟2𝑡𝑡2 + 𝑑𝑑 + 1
𝑑𝑑 𝑑𝑑 + 1

.

• Numerically, if we have only one training example, 𝑡𝑡 = 1, and maximal entanglement (𝑑𝑑 = 𝑟𝑟 =
8), then, 

1 −
8212 + 8 + 1

8 8 + 1
= −

1
72

. 

So,𝔼𝔼 𝑅𝑅 = 0.

Figure 5: Diagram of quantum circuits w/o ent (a), and with ent (b).
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Figure 6:  Average risk vs. training pairs 𝑡𝑡; entangled data outperforms unentangled and classical 
baselines (left). Risk fluctuations drops as entanglement 𝑟𝑟 and 𝑡𝑡 increase (right). 

• The average risk was calculated over 10 random unitaries and 10 random training sets 
for the 2-dimensional implementation on the Rigetti quantum computer. 

• Over 10 random unitaries and 100 random training sets in the case of the 64-
dimensional implementation on the simulator.

• Baselines: Theoretical classical NFL bounds — deterministic/permutation maps and 
stochastic maps (no specific classical ML models used).
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Critical Analysis:

Why the advantage arises:
• Entanglement turns process learning into state learning meaning an entangled input 

probes all input directions at once. The bound depends only on 𝑟𝑟 × 𝑡𝑡 (effective 
information), not on the learning algorithm.

Open questions:

• Imperfect training: If training isn’t exact, how does the bound deform?
• Noise & robustness: How do gate noise alter the 𝑟𝑟 × 𝑡𝑡 scaling? Can we derive noise-aware 

lower bounds?
• Entangled dataset: Where do entangled datasets come from in practice? How can we 

detect and use entangled signals in a real-world classical dataset?
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Paper III: Quantum Discord-based Advantage

Title: The power of one clean qubit in supervised machine learning.

Entanglement is highly susceptible to real-world noise (a major constraint in
the NISQ era). The challenge is developing an efficient, robust quantum
advantage for supervised learning that avoids fragile multi-qubit
measurements

Problem Statement

Use the minimal-resource Deterministic Quantum Computing with One 
Qubit (DQC1) framework to estimate complex kernel functions for 
classification. The architecture uses only a single, high-quality ("clean") 
qubit, coupling it to a register of target qubits that can be in a mixed 
(noisy) state.

Solution Method

Quantum discord ensures robustness against noise, and the estimation cost 
(shot complexity) is independent of the system size 𝑛𝑛 (qubit count).

How Discord Solves it
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Title: The power of one clean qubit in supervised machine learning.

It describes a system's ability to maintain a stable, synchronized phase
relationship between its quantum states, allowing it to exist in multiple
states simultaneously through superposition.

Quantum Coherence

The change in coherence Δ𝐶𝐶 of the control qubit is directly linked to the kernel’s 
discriminative power:

Δ𝐶𝐶 𝐱𝐱, 𝐱𝐱′ = 𝐻𝐻2
1 − 𝐾𝐾 𝐱𝐱, 𝐱𝐱′

2
.

where 𝐻𝐻2 𝑥𝑥 is the binary Shannon entropy, and 𝐾𝐾 𝐱𝐱, 𝐱𝐱′ is the kernel method

which can also be expressed as 𝐾𝐾 𝐱𝐱, 𝐱𝐱′ =
tr 𝑈𝑈𝑛𝑛 𝐱𝐱,𝐱𝐱′

2𝑛𝑛
.

Theorem 1: Coherence Consumption Metric 

If zero coherence is consumed, the kernel cannot learn.
Main Idea
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Title: The power of one clean qubit in supervised machine learning

Discord is bounded by consumed coherence:
𝐷𝐷𝐺𝐺 𝜌𝜌𝑓𝑓 ≤ Δ𝐶𝐶

where, 𝐷𝐷𝐺𝐺 is geometric discord, a distance-based measure of “quantum-but-
not-entangled” correlations, and 𝜌𝜌𝑓𝑓 is the final quantum state.

Theorem 2: Discord-Coherence Trade-off

The nonclassical correlation we create (quantum discord) is upper-bounded
by how much coherence we spend from the single clean qubit. This ties
the kernel signal we read out to a concrete resource—coherence—giving a
simple, hardware-friendly knob for performance vs. noise.

Main Idea
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Title: The power of one clean qubit in supervised machine learning.

Figure 6: The circuit representation of the DQC1 algorithm. The input states for control and target 
qubits are 𝐼𝐼1+𝛼𝛼𝛼𝛼

2
, with 𝛼𝛼 ∈ [0,1] and 𝐼𝐼𝑛𝑛

2𝑛𝑛
, respectively. 𝐻𝐻 and 𝑍𝑍 denote the Hadamard and Pauli 𝑍𝑍 gates.

• Suppose we build a data-dependent unitary: 

𝑈𝑈𝑛𝑛 𝑥𝑥 = exp 𝑖𝑖�
𝑗𝑗=1

𝑛𝑛

𝜙𝜙𝑗𝑗 𝑥𝑥 𝑍𝑍𝑗𝑗 + 𝑖𝑖�
𝑗𝑗<𝑘𝑘

𝜙𝜙𝑗𝑗𝑗𝑗 𝑥𝑥 𝑍𝑍𝑗𝑗𝑍𝑍𝑘𝑘 .

where 𝑥𝑥 is the classical data point (feature vector), and the functions 𝜙𝜙𝑗𝑗(𝑥𝑥) and 𝜙𝜙𝑗𝑗𝑗𝑗(𝑥𝑥) are 
the feature maps that convert features of 𝑥𝑥 (and pairwise interactions of features) into 
rotation angles.
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Title: The power of one clean qubit in supervised machine learning.

Figure 7: The circuit representation of the DQC1 algorithm. The input states for control and target 
qubits are 𝐼𝐼1+𝛼𝛼𝛼𝛼

2
, with 𝛼𝛼 ∈ [0,1] and 𝐼𝐼𝑛𝑛

2𝑛𝑛
, respectively. 𝐻𝐻 and 𝑍𝑍 denote the Hadamard and Pauli 𝑍𝑍 gates.

• In DQC1, the control register is the single clean qubit (not a multi-qubit block) that 
controls the data-dependent unitary acting on the mixed 𝑛𝑛-qubit register.

•  The control is initialized in a partially pure state 𝜌𝜌𝑐𝑐 = 1
2

(𝐼𝐼 + 𝛼𝛼𝛼𝛼) (purity 𝛼𝛼 ∈ [0,1] ), 
apply a Hadamard, and couple it to the mixed register 𝐼𝐼/2𝑛𝑛 via a controlled- 𝑈𝑈𝑛𝑛.

• The control qubit accumulates the global interference from 𝑈𝑈𝑛𝑛; its off-diagonals encode 
tr 𝑈𝑈𝑛𝑛 /2𝑛𝑛. Measuring only the control (e.g., 𝑋𝑋 and 𝑌𝑌 ) gives

⟨𝑋𝑋⟩ = 𝛼𝛼Re tr 𝑈𝑈𝑛𝑛
2𝑛𝑛

, ⟨𝑌𝑌⟩ = −𝛼𝛼Im tr 𝑈𝑈𝑛𝑛
2𝑛𝑛

, which is exactly the kernel entry we need.
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Title: The power of one clean qubit in supervised machine learning.

Figure 8: The accuracy as a function of the control qubit's purity for the “adhoc_dataset” is shown. Note 
that when 𝛼𝛼 = 0, the state is in a completely mixed state, and when 𝛼𝛼 = 1, the state is pure. The blue 
curve (square) indicates simulation results, and the red curve (circle) shows the results obtained from 
IBM hardware.
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Critical Analysis:

Why the advantage arises:
• Measuring one qubit per kernel entry is a big advatange given readout is one of the 

noisiest ops on superconducting devices. The shot complexity (𝑂𝑂 𝜖𝜖−2𝛼𝛼−2log(1/𝛿𝛿) ) is 
independent of the qubit size. This lowers readout noise and decouples sampling cost 
from 𝑛𝑛, yielding a hardware-friendly estimator. 

Open questions:
• Expressivity vs. robustness: When, precisely, do discord-based DQC1 kernels 

underperform entanglement-dependent quantum kernels?
• Benchmarking vs. classical baselines: How do DQC1 kernels compare to strong classical 

kernels regarding accuracy and computational speed?
• Benchmarking vs. other quantum methods: Where do DQC1 kernels sit relative to 

alternative quantum kernel estimators?
• Role of the feature map on accuracy: How exactly does the choice of feature map 𝑈𝑈𝑛𝑛(𝑥𝑥) 

impact the accuracy and generalization?
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Summary

QCorr Advantage Domain Mechanism of Advantage NISQ Relevance
Entanglement Computational Speed in

sequence translation task
Substitutes Classical Communication High robustness to constant 

noise

Entanglement Data Efficiency 
(Learning Theory)

Amplifies information per sample (𝑟𝑟 × 𝑡𝑡). Theoretical, sensitive to 
noise

Discord Noise Resilience 
(Kernel Estimation)

Converts local Coherence into Correlation (DQC1) High, due to resilience in 
mixed states

• Gap: Most proofs assume discrete data, perfect training conditions and a constant 
device noise, but in practice, machine learning deals with continuous data, training 
error and limited-noisy quantum hardware. 

• We need a QML research roadmap that is theoretically complete, measurable, and 
deployable.
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generalized
learning theory

1) Generalized Q-NFL: bounds on 
expected generalization risk as a function 
of 𝑛𝑛 (samples), usable correlation 𝑟̃𝑟 
(post-noise Schmidt rank), depth 𝐿𝐿, and 
noise params 𝜂⃗𝜂. 
2) Generalized ML task-based advantage 
theorem for training and inference.

1) Scalable encoding for continuous, high 
D-data.
2) Theory bound on diff. encoding 
method (angle/amplitude) as a function 
of accuracy and resource.

1) Eval metric beyond p-value and 
classical statistical significance. 
2) Quantum-native metrics such as 
fidelity, coherence used, wall clock, 
quantifiable Qcorr, energy consumption, 
etc.  

1) Generate benchmark datasets using 
tunable entanglement measures. 
2) Beyond MNIST classical dataset.
2) Comprehensive classical and quantum 
algorithms’ performance on the 
benchmark datasets.

1) Hybrid pipeline.
2) Entanglement for expressivity.
3) Discord for robustness with classical 
head. 

1) Pilot domain: EEG signal 
segmentation, multimodal classification.
Success: ↑accuracy at equal shots/wall-
clock or ↓shots at equal accuracy.

Roadmap

data/encoding metric benchmarks system application
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Closing Thoughts



S. Purba: Quantum Correlations Enabling Quantum Advantage in Machine Learning October 24, 2025 53

Closing Thoughts

• It’s too early to either claim or dismiss quantum 
advantages for most ML tasks—uncertainty here is what 
makes the field exciting.

• Why are we interested in machine learning? 
• “solve intelligence”, “wants to understand how the 

human brain works”,..
• By focusing on the human brain, we risk ignoring other 

intelligences—animal cognition, plant 
signaling/coordination, and non-biological forms [4].

• Quantum ideas (e.g., Penrose-Hameroff Orch OR 
hypothesis [5]) keep open the possibility that aspects of 
cognition may exploit quantum effects.

• Also, experimentally, scientists have discovered quantum 
properties [6] in neurons—miraculously, these 
properties persist despite the noisy environment.

• None of this proves the brain is a quantum computer; it 
simply argues against premature conclusions.

• Because quantum mechanics underlies all physical 
processes, it’s rational to explore quantum approaches 
alongside classical ones in the quest for building artificial 
general/super intelligence (AGI/ASI).
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